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SECTION 1

® INTRODUCTION
PY The behavior of the electron energy spectrum in a weakly jonized

gas in the presence of electric fields, momentum transfer collisions, and

energy transfer collisions with the host gas is a long standing problem in

plasma physics. Historical surveys appear in References 1 and 2. We have
o in mind electrons with energy from zero to several eV or a few tens of eV.
: The electron energy spectrum controls many processes of inter-

est, such as rates of chemical reactions (attachment, detachment, recom-
@ bination, etc.), avalanche rate, electrical conductivity and mobility,

diffusion, mean electron energy, mean momentum- and energy-transfer col-

lision frequencies, etc. MWeakly ionized gases occur frequently in natural

and laboratory situations: for example the ambient or nuclear-disturbed
® ionosphere, and in jonization following dosed air due to gamma-rays (e.qg.

nuclear EMP), or X-rays, or the passage of fast charged particles. If an

electric field is present it can cause the electron cloud to drift, heat

it, and possibly produce avalanching.
[

HISTORICAL :

c—_— __ﬁ_";*
The spectrum 1is controlled, of course, by the Boltzmann FEaqua- ' -——EZ__._;}

o tion, and techniques for solving it, and certain progress, were establish- 0 3

ed decades ago (e.g., References 3 and 4). Useful answers were hampered 0

by lack of basic molecular cross sections, and the difficulty of analytic-  .lio iz

ally solving the Boltzmann Equation. An expansion in Legendre Polynomials = _
® in the angle between the velocity vector and the electric field is useful
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in the swarm regime, in which the drift velocity is small compared with
thermal velocity, and this expansion will be employed in the present work,
at least in its early stages.

Harder to handle is the collision integral, because of discrete
energy loss in inelastic collisions. The integral can be expanded in
powers of mean energy loss per collision divided by the average swarm
energy. When the expansion is terminated with the first non-trivial term,
representing mean energy loss, the ensuing results are called the Contin-
uous Slowing Down Approximation (CSDA). It involves an energy-weighted
sum over excitation cross-sections called the "Energy Loss Function", or
the "Stopping Cross Section", measuring the mean enerqgy loss rate of mono-
energetic electrons.

Data available more recently have made it possible to construct
the energy loss function at these relatively low energies where it is ex-
tremely difficult to calculate from first principles. (At higher ener-
gies, > 1 keV, the Loss Function can be calculated in the Born approxima-
tion, where it is known as the Bethe mean stopping power formula.) Using
it, energy spectra and bulk plasma parameters computed in the CSDA have
been shown to disagree with experimental values by, for example, perhaps
30% for mobilities, and by large factors for the avalanche rate at low
temperatures (e.g., Reference 5). Poor agreement with avalanche indicates
that the CSDA is particularly deficient in reproducing the high energy
tail,

In the special case of constant mean free path and energy loss
only to elastic recoil (applicable for example in noble gases at energies
below electronic excitation), the transport coefficients computed in the
CSDA agree reasonably well with experiments. The spectrum in this case is
known as the Druyvesteyn spectrum. Historically it was the first non-

Maxwellian spectrum computed for a plasma in the presence of an electric
field.
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With the advent of better experimental cross-sections and com-
puting facilities attention turned to numerical solutions of the complete
Boltzmann Equation with inelastic collision integral, by either Monte
Carlo or finite difference techniques. This enabled relatively accurate
energy spectra and swarm parameters to be computed, which compare general-
ly quite successfully with experiments, Indeed, one way of determining
basic electron-molecule cross-sections is to assume a form for them
(guided by previous experiments and quantum-mechanical calculations), and
compute the resulting swarm parameters. The cross-sections are then
adjusted until computed parameters agree with experimental ones. This
technique has been successfully employed by, for example, A. V. Phelps and
co-workers over some years (for example, References 6 and 7).

Thus numerical methods exist to compute spectra and transport
coefficients. These numerical techniques do not offer physical insight
into swarm behavior, and often do not suggest physically-motivated
approximation schemes that might be useful in specific applications.

APPROXIMATE APPROACH

Here we prefer to study more intuitively the processes that
determine the spectrum. Our goal is not precise solutions of the Boltz-
mann Equation. Rather, we build on physically motivated models to con-
struct an approximation to the inelastic collision integral superior to
the CSDA. This will lead us to an approximate differential equation for
the time evolution of the spectrum in a time varying field, and to a
closed form analytic expression for the steady state energy spectrum in
terms of the host gas momentum-transfer cross-section and two weighted
sums over inelastic energy-transfer cross-sections. The availability of
basic electron-molecule cross-sections in interesting gases makes the

approach advantageous and useful.
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The argument makes clear the importance of spread of energy loss

about the mean (energy diffusion, loosely speaking). Usual treatments,
such as the CSDA, which retain only the mean energy loss rate, miss a cri-
tical piece of the physics determining the spectrum. The approximate
spectrum retaining this critical physics can be reduced to quadratures,
and is essentially no more complicated in form than the CSDA. It makes
clear the physical reason for the inadequacy of the CSDA, and, in particu-
lar, it becomes clear why the tail is so low in that approximation. We
find the transport coefficients in Nitrogen come out in closer agreement
with experiment than in the CSDA. Other gases will be studied in the
future. Hopefully the accuracy of the computed ccefficients in these
gases will be sufficient for a number of applications.

The validity of our approximation (which, as a differential
equation, is local in energy space) is still limited by discrete finite
energy loss jumps in inelastic processes such as electronic excitations.
We require energy steps to be small compared to the spectrum width,
Examples of its limitations will be seen in the avalanche rate where our
imperfect treatment of energy loss, although improved over the CSDA's,
results in a somewhat high rate, and in the N, drift velocity at a few eV
where the tail of the spectrum can excite electronic states, suddenly
decreasing the electron energy by 6 or 7 eV or more. However vibrational
excitations cause fractionally small energy transfer, and the approxima-
tion appears to be excellent when vibrational excitations dominate, or at
higher energies where even electronic levels are not much more energetic
than the energy spread in the spectrum itself,

Aside from these problems, the spectrum we deduce reproduces ex-
perimental drift velocities and diffusion coefficients very well over some
5 orders of magnitude in the experimental parameter E/p (the reduced elec-

tric field) spanning, for example, essentially the entire range of data
compiled by Dutton (Ref. 8).
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SECTION 2
THE BOLTZMANN EQUATION

The Boltzmann Equation for the electron distribution function
f(V) in an electric field is

>

2f _eE«v f = C + Sources - Sinks (1)
3t m Vv

dropping the spatial gradient term and any magnetic field from the left
hand side. Here e is the magnitude of the electron charge. Sources may
be X-ray ionization, or ionization by a fast charged particle. Sinks
would include recombination or attachment. Actual sources and sinks are
problem specific, and are not considered further here. We concentrate on
the effects of the field term and the collision integral C in determining
f.

Many bulk plasma parameters depend on only the speed distribu-
tion function

Fv) = Jd3, f(V) (2)

or, equivalently, on the energy distribution function g(w),

g(w)dw = F(v)vZdyv,

g(w) = (v/m)F(v)

(3)

where w = mv2/2 is the electron energy. If n is the number density of

particles, the normalizations are
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The dimensions of g are, say, em eyt
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(4)

The equilibrium Maxwell distri-

butions for a gas of temperature T (in energy units), which obtain when

E =0, are
fu(V) = nem_y /7 eomv?/eT
M 2T
FM(V) = 4fth

1/2
in) = 23 e

LEGENDRE EXPANSION OF THE DISTRIBUTION FUNCTION

For reduced electric fields not too large, the

departure from

isotropy will be small, and f is usefully developed in the usual lLegendre

> >
Polynomial series in the angle 2 between v and E (ref. 4)

f = : fq(v) Pl(c059)

fg+ f, cosd + small terms

The quantitative criterion is Vdrift « Vthermal

(6)

When electron-neutral

collisions dominate, C is linear in f. C is also expanded, and when the

series are inserted in Eq. (1) the P-. and P: parts become
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f, controls the eneray spectrum, for F and g are

F(v) = (f0+f1cose)dov = 4nf,

q = 4nv )
m

while f, controls the bulk electron motion with a drift velocity

<+
n

“f v ddv =L r (F 4+ cose)vdy
n

a
3 =

LEGENDRE EXPANSION OF COLLISION INTEGRAL

Thus C, 1s the contribution of the collision integral to the
time rate of change of g, while C, is the contribution of C to the rate of
change of that part of the spectrum that controls the swarm momentum. In
general, for a weakly ionized qas in which electron-neutral collisions
dominate ‘ref, 4)

Cl = - ‘)mfl (]-O)

where m NQVwm is the mono-energetic momentum transfer collision frequen-
Yy v is the momentum transfer cross-section, and N, is the background
aas number density.

C. receives contributions from elastic and inelastic processes.

Al 1
A oeelas  Linelas

(11)
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S The elastic contributions are from electron energy 10ss to heavy
molecule recoil in an elastic collision, and electron heating by elastic

ﬁ: collisions with the host gas at temperature Tq. These parts are (ref. 4)

by

& 812 =1 3 am, vify e 27q 3% | (12)

o Y a(v?) M, T 3(v?)

where M, is the molecule mass, assumed much qreater than the electron mass
m. The first term in €g. (12) is tr mean energy loss rate by elastic
collisions. The second term represents the heating rate by the warm gas
(the Davydov term). Note the first is essentially proportional to 3f,/3w,
while the second is proportional to 32f,/aw2. The first term is the CSDA
to elastic energy loss, and the second is a diffusion-like correction due
to gas motion. Higher order corrections (in m/M;) are safely negligible,
and the CSDA is adequate for elastic collisions.

C;nelas will be treated in the next section.

SLOWLY VARYING FIELDS

Eqg. (10) is inserted into Eq. (7b), o
it.l_-e_Ea_fQ.=°\)f1 (13)
3t m v m
L
When a/at « Vs We have
f,=eE 3% (14)
mvm v w
|
8
q

e
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expressing the first order distribution function in terms of the energy

-1

spectrum., v _ is greater than some 104 sec in sea level air, so condi-

m
tion (14) holds in many circumstances.

To obtain the equation for f; we combine the two terms in the
first of Eqs. (7) (2f,/v+¢af /dv = v-2 a(v2f,)/»), and insert Eg. (14) for

flt

oy @22 3 42 - + BneTas
3 3mdy? ”

We may now transform to an equation for g(w):

g - 2 EL.(wg)ll - Celas + Cine]as
3 w

g g

In this equation we have split the electric field term into two parts, one
essentially proportional to »g/w, and one to %g/w?. We also define the

collision integral terms on g rather than f;:

Ce]as - 2m > {\ wig+ W T

M W )1 (17)

9% T

Cine]as

q is taken up in the next section.

ENERGY DIFFUSION IN THE ELECTRIC FIELD

The two parts of the electric field term in Eq. (16) correspond

mathematically to a mean flux (~3g/2w) and a diffusive flux (~32g/
awz). That is, elastic scattering in the presence of an electric field

produces both a mean gain in energy (rate ~ e2E2/mwn) and a diffusion




LN
N 2

Pl
Ko

y ".7-\4-

in energy (diffusion coefficient - (2/3)we2E2/mﬂm). That elastic (or
momentum-transfer) scattering causes velocity diffusion is well-known.

That energy diffusion is important can be seen by comparing its
effect in Eg. (16) to that of mean energy gain on a Maxwellian
distribution of temperature T:

-2 W
Diffusive Gain = 3 (wg)

: (18)
Mean Gain

V=) c»loa

£

|

)

—

+
wir
—Nl€

This is of order unity, and changes sign over the average energy 3T/2.
Diffusion 1l1lows particles of energy w > 3T/2 to gain energy faster than
the mean, and particles with w < 3T/2 to gain energy slower than mean,
thus spreading out the spectrum. Diffusion adds body to the spectrum.
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SECTION 3
THE INELASTIC COLLISION INTEGRAL

The general form for the collision integral is

Cg = [ g(w')P(w',w)dw' - g(w) [ P(w,w')dw' (19)

where P(w,w')dw' is the probability per second that an electron with
energy w collides and ends up with energy (w',w'+dw'). The CSDA to the
elastic part of Cg was given in Eq(l7). For the inelastic part, colli-
sional excitations to discrete molecular states k of energy Wi and cross
section ck(w), contribute to P an amount

P(w,w')dw' = No v g g, S(w-w -w')dw' (20)

assuming all host molecules in the ground state. For a diatomic molecule
there will be rotational, vibrational, and electronic states. Excited
rotational levels will be populated thermally. This is accounted for in
Appendix A in connection with the evaluation of the functions Lin and Min

of Equations (23). For simplicity in the present discussion, we write N
as if all molecules were in their ground state. The integrals in Eq. (19)

are then readily evaluated for these inelastic processes:

C, = No ) 1(gva)yy, - (gva)y,] (21)

11
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'.‘0 This clearly exhibits the discrete nature of energy loss, g being popu-
.,.: lated at w by electrons of energy w + W Since the cross sections I
: are not exact step functions, the sum C;nehs itself is, of course, a
48]
u! continuous function of w. Developing the summand in a Taylor Series about ®
o w, we exhibit the first two terms,
%
Lo
e inelas 3
! c = Ng 2 Tvgl, + 2 (vgM, + L. 22
T q 0 2= Tvabyy + 2 (v, )] (22) ]
v
o where
":. _ 9
N Lin = ) wkok(w) (23a)
\ k
LN
@
_\:, =V 1 2
- Min } > Wk ok(w) (23b)
-'..1’ k
X
o
i
o Lin is the Energy Loss Function describing the mean energy loss rate to ®
o inelastic processes. According to Eq (17), the elastic part of the loss
g function, for the target molecule at rest, is
. = 2m _
. .' Le'l M— O'mw (24) w
oy
o
o~ where we have used v = Novo . The total mean loss rate to an electron
b, of energy w is ,
L
= L=lar v hin (25)
L Since energy loss collisions are probablistic processes, there -
! will actually be a distribution in the energy loss about the mean rate L.
I\- 1
L This is approximated by the M, = term, which can be called the Stragqling
:'{3: Function in analogy to the high energy case. This second term in Eq.
e (22), proportional to »2/aw?, approximates the true discontinuous random ®




walk in energy space by a diffusion-like process. Contributions to the
Straggling Function from elastic scattering, Me]’ are smaller than Le] by
~ (m/My)w, and can be neglected. Min therefore essentially does not dif-
fer from the total Straggling Function M = Me] + Min'

The CSDA neglects the Min term and retains only the mean loss

rate L. in Eq. (22).

Momentarily neglecting Tg, Eq. (16) for ag/3t now reads

59 + 2 {e_ZE_Z_ (g (wg) I} = Ng 2 fvgL + %I_ (vgM) ] (26)

S22
at AW mv, ) 3 ow W

or, in flux conservative form,

29+22 =0 (27)
At oW
where
22
= e°F -2 - Novgl - No 2 (vgM) (28)
5 lq 3= (wg) ovg 02 (v

is the flux in energy space.

MAGNITUDE OF SPREAD IN ENERGY LOSS

Like L, M is constructed from individual excitation cross
sections. The ratio M/L is likely much more slowly varying than L or M
itself, since irregular behavior in the cross sections such as the N2
resonance spike near 2.5 eV will occur in both L and M and divide out in
the ratio.
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Spread about the mean energy loss L can be compared with L.
J:__ From Eq. (28) it is of order

o

'ﬁf::if Diffusive Loss -~ _1 3 (vgM) - M_ (29)

‘ Mean Loss vglL 3w
#"

:; where W is the energy over which Mg = (M/L)Lg changes much, being of
::::: order the swarm temperature or a characteristic energy over which L itself
U changes. This ratio is not negligibly small, and can be of order unity,
a0 showing that diffusive contributions to energy loss can be comparable to
?‘_ the mean loss, as was the case for energy gain. Sincc in steady state
':o mean loss essentially balances mean gain, diffusive loss can be as
'.l:u important as diffusive gai~ in determining the spectrum,

,:':_'. IMPORTANCE OF ENERGY DIFFUSION

o

2 The steady state spectrum from Eqs. (27) and (28) is that for
vom which ¢ = 0, and results from a balance between total energy gain from the
A' electric field and total energy loss to collisions,

- [t is instructive to temporarily neglect the diffusive contribu-
o tions to the flux; that is, the M tem in the collision integral, and the
:::: term -(2/3)5(wg)/3w in the electric field expression. The steady state
j_‘_ spectrun one then obtains is that resulting from mean energy gain e?f?/
g MV balanced by mean energy loss NgvL. See Figure la. This spectrum
o reduces to a delta function at a single energy w; where the rates are
equal. Since the mean gain is a decreasing function of w, while the mean
',:_'.:: loss is an increasing function, all electrons with w > w; lose energy
"f faster than they gain it, and all electrons with w < w, gain energy faster
o thar they lose it. All electrons thereby end up with energy w,. Thus the
.,j physical process which actually determines the energy spectrum is spread
@ in energy gain or loss about the mean. Mean gain and loss rates determine
..h only the average energy in the swarm,

o 14

e
)%";r oyl T e e e e N e S T LR e st T e ot e ety . P UL W
A AN T At ol s L £ 4 TN P S S RO """’ NN, SN




v =

QXA AN

® MEAN_GAIN RATE MEAN LOSS RATE

e?E%/mv, NovL

“y Ca e
RN

Ll

RESULTANT SPECTRUM R

]
e

i

Figure la Balance of mean gain and loss rates.
Resultant spectrum is a 6 function at wy.

-
)
B4

COMPLETE . _ ~COMPLETE

RATE

.5 v e =
Y Yy 4 s <

v

o e

w

]

REALISTIC
SPECTRUM CSDA

‘ Figure lb Balance of complete gain and loss rates.
° CSDA neglects spread in energy Jloss.

15 %

° _|
.l-)
) Tl

P AT T N TR T e e
1041 G Y AN AL o

e e e e e s 7
AT A A N St e T e T e e e N
hINEAD, S AT NN 2 S - - "

..........

N e
M



[t is clear that for electrons with a spread in energies to be
in steady state there must be a balance between gain and loss rates over a
spread in energies, and this spread determines the spectrum.

This shows that in the CSDA, the only physical process which
establishes the spectrum, that 1is, gives body to the distribution
function, is energy diffusion due to elastic scattering in the electric
field, since in the collision integral only the mean loss rate is
retained. Figure 1b illustrates the CSDA and a realistic spectrum,

Since energy diffusion 1is so important, we must keep the
diffusive contribution in Cg as well to deduce a realistic spectrum.
While L is the lowest order term in the expansion of Cg, it affects only
the average swarm energy. M is the Towest order contributor from the col-
Tision integral to the energy distribution.

As Figure 1b shows, the CSDA is poor because it retains energy
diffusion in the E-field energy gain term, but neglects it in energy loss
processes. That is, it neglects "half" of the physics determining the
spectrum.

From this point of view we see that M should not be considered
just another term in a Taylor Series expansion of a function. Rather it
represents a critical piece of physics that determines the distribution
function, and must not be neglected. The functional form in which M
appears is a Fokker-Planck approximation to the true random walk. The
approximation will be best when the energy loss per collision is small
compared with the energy spread in the entire spectrum, Similar to the
usual Fokker-Planck equation, it assumes large energy changes occur as a

succession of small ones.

The L, M approximation to Cg is, of course, local in energy
space, as is any differential approximation to a random walk problem.

\“-q [ ,‘_-‘ -
.‘ l"\‘u‘ e -




If the energy loss W is extremely small compared with w, then
Equations (23) show M << wL, and the CSDA will be adequate. This happens,
for example in elastic collision recoil as mentioned after Eq. (25). If
W is comparable with w or the spectrum spread, then the Fokker-Planck
diffusion approximation breaks down. This begins to happen in N, at
average energies of, say, 1 or 2 eV when energetic tail electrons can
excite electronic transitions and W " 7 eV, or at ~ .01 eV where rota-
tional jumps have comparable energy. There is an interesting intermediate
regime where the dominant W is sufficiently smaller than w but not negli-
gible. This appears to be the case in N, for E/Ny, ¥ .0l Td, giving the
swarm energies greater than rotational jumps, and where vibrational tran-
sitions dominate. Even at 1 or 2 eV, electronic transitions induced by
the tail are only a part of the energy loss, and the diffusion approxima-
tion is still not bad.

One important feature of keeping M is that this term allows some
electrons to lose energy slower than the mean, thereby supporting the high
energy tail of the spectrum, as seen graphically in Figure 1lb. This will
greatly increase the avalanche rate over the CSDA.

We have still neglected third and higher derivatives in the
expansion Eg. (22). The main properties of any normalized distribution
with a decaying tail, such as F or g - /W F, are its average energy and
the "width" of the function about the average. The first derivative term
L determines the average energy, and the second derivative term M deter-
mines the width, together with corresponding terms from the field contri-
bution. Higher neglected terms could affect only the detailed shape of
the function. For example, the third derivative would alter the asymmetry
of the spectrum about the mean, and the fourth derivative would set the
kurtosis. The transport coefficients of interest are weighted integrals
over the spectrum, and the details of the spectrum tend to integrate out.
Thus there is physical reason to expect that stopping with L is insuffi-
cient (CSDA) but stopping with M is sufficient to calculate a spectrum
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which reproduces bulk transport coefficients with some acceptable accur-
acy. These arqguments may be less true for the avalanche coefficient at
lTow temperatures which reguires an accurate high energy tail.

CORRECTIONS FOR GAS HEATING

Equations (23) for the inelastic parts of L and M are expres-
sions for the gas at rest. Thermal effects were mentioned only in connec-
tion with the elastic part of L in Eq. (12). In fact the Davydov correc-
tion for thermal motion of molecules shows that collision calculations are
to be modified by replacing g by:

s g+ Twa (- 30
g+ g el (30)

or, in terms of F(v):

FoF+ T 2F (31)
95w

Therefore thermal gas motion is taken into account by replacing the flux &
in Eq. (28) by

»= €6 1g - 22 (wg)] - Novilg + T /W & ()

m 3 aw w /W
(32)
-3 INgMIg + T vw - ()
oW 9 W /W

The steady state spectrum is that for which ¢ = 0. When E » 0 as well,

the solution of (32) clearly reduces to a Maxwellian, as it must, for then
g + Tg /w d(g//W)/dw = 0.

O

)
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SECTION 4
EQUATION FOR TIME DEPENDENCE OF ENERGY SPECTRUM
®
Dropping the Davydov terms, equations (27) and (28) (or (32)
® with Tg = 0) control the time evolution of the energy spectrum in the ab-
sence of sources and sinks:
g+ (e%%7g-22wa)] - Nvlg- N,dvaM)} =0  (33)
@ Mt w mv, 3 0w W
Sources and sinks are to be added to the right hand side for a specific
problem as appropriate. Eg. (33) is valid for E varying slowly compared
® with the momentum transfer frequency Vo but on any time scale relative to
the mean energy transfer frequency. Since - > 10*'/sec in sea level air,
Eq. (33) will apply to many problems of interest. For example, following
a pulsed ionization source, for which the starting spectrum is the initial
g condition to Eq. (33), this equation determines the relaxation of the
spectrum toward equilibrium in the electric field and warm qas.
For situations where £ = 0, the resultinag equation
@
27 2Ny 2 ivlg + MMvgM) = g (34)
ot W Ny
& determines the relaxation of g from an initial condition toward thermal
equilibrium. Without the £ term, fa. (34) is no longer limited by Vdrift
< Vyhermal (two term Legendre series), and so applies to electrons of any
energy. It includes mean enerqv loss, straggling, and thermal heating
™) (through thermally populated rotational states in L and M).
19
@

™, '-"-»"u_‘-'L e e T AT e e e e R < .\._,'.h.,

e .
.........
» )

CLN I IDT R
-, 'v . t . L R T P R P P T s S S i P P T PRI M} 3
YW 1N W, .;Q.n".n_.r .r...r ls. -a\.dﬁk.a. dL‘ A .t&.c.hx‘hx.;.x.;;;‘x_gh;idru-hh-(.x- ..AJ (- -é-n. O YRR



Y oy P medh at i abl i aks - Al " L M AL A ol & AE A el d A da e aw a.n adnan A ans dn o |

¢

If straggling were to be neglected (CSDA), the resulting equa-

Yy tion

o 3 N D .
- = No ~ (vgt) = 0 (35)

¢

o would show simple convection in energy space, and laminar flow. That is,
- electrons of higher energy would never overtake ones of lower energy.
Straggling destroys laminar flow, and permits passing in energy space, as -

Jl actually occurs in a random walk, and spreads out the spectrum.
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SECTION 5
STEADY STATE SPECTRUM

In steady state, the solution for F = (m/vjg of Eq. (33) with
g/t = 0 s

woo L+l (um
F=F>expi - | " 32 dw > (36)
3 (eE/Ng) M
3 5

m

where F3 is a normalization constant set by Fg. (4). This spectrum is an
improvement over the CSDA

g L
L (37)

F=F,; exp{- ”______
(eE/NJ)*

which results when M is neglected. Both have a quite simple functional
form,

THE DRUYVESTEYN SPECTRUM

The Druyvesteyn spectrum is recovered from Eq. (37) in the
special case of I T constant and elastic collisions only,
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’" Then, F reduces to v
0N
\" F = Fqy expl- ______3m 6“21 v } (39)
N Mo(eE/Ng)?2
B 3l
f::ﬂ In this same special case the more correct Eg. (36) is essen-
é:?: tially the same as (39) because, for elastic collisions only, M ~ (2m/
:&; Mg)wL << wL, and the M correction is negligible. Thus the improved spec-
we trun does not mar already good agreement with data. w»
o
3:i It is when inelastic collisions are important that the differ-
‘xi: ence between (36) and (37) is significant.
A @
Kot THE NEW TERMS
,r*i In Section 6 it will be shown that the two terms (eE/Ng)2/3 o
! and M in the denominator of Eq. (36) can be identified as diffusion coef- ®
o ficients in energy space due to elastic scattering in the electric field
'2%2: (first term) and due to spread in energy loss about the mean (M term).
iiiz The total diffusion coefficient is just the sum of the two.
.‘?, »
‘; The first term L in the numerator is the mean rate of energy
*E{i loss (or gain, if L is negative) due to collisions. The second term
;;il (1/w)d(wM)/dw is a mean loss (or gain) rate due to energy variation of the
K20 diffusion coefficient M. ¢
fuj At energies below vibrational excitation, and neglecting elastic
T}Eﬁ scattering, only rotational states contribute to L and M. We shall use
Ot the Gerjuoy-Stein rotational cross sections to evaluate this contribution -

(Appendix A). States aJ = 2 apart are spaced by (4J-2)B,, where B, is
the rotational constant. The cross section for de-excitation, o5 5 ,
diverges as v4JB,/w when w { 4JB,. In nitrogen, B, = 2.5x10-% eV. This
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causes a formal divergence in the numerator term (1/w)d(wM)/dw, and effec-
tively makes the spectrum unreliable for w ¢ 10-° eV, and the calculated
transport coefficients inaccurate for E/N; ¢ 10-° Td. When w ¢ 4JB . dif-
fusion is no longer a good approximation., For numerical calculations we
have simply smoothed out the divergence by multiplyina this numerator term
by w/(w+B3). The inaccuracies in characteristic enerqy and drift velocity

will be seen in Section 7.
THE LOW ENERGY THERMAL LIMIT

For vanishingly small electric fields, the remaining terms in
Eq. (36) should make F reduce to a Maxwellian at Tg. Thus we should have

L+ w?! 3(wM)/we 1 (40)

M T
g

or, solving for M,

2 =(w'-w)/Tg
j e W

j ‘L(w')dw' (41)
W

£ |

M must be a weighted integral of L over an energy span about Tq.

Since T enters L and M only through rotational populations (we
neglect vibrational temperature), Eq. (40) should hold if we consider only
the rotational contributions. Upon constructing L and M (Appendix A) one
finds Eq. (40) is in general not true. Rotational levels with J 10 or
larger exist, and so energy jumps 4JB; = 4x10x2.5x10-% = .01 eV in N:

occur, encroaching on electron thermal energies ~ .02 eV. That is, the
diffusion approximation breaks down at these low energies, and Eq. (36) is

not a good approximation to the spectrum,
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However in a hypothetical gas with B; = 0, all enerqgy jumps are
small, and Fa. (36) is correct. For such a gas, Eq. (40) should hold. In
Appendix A, using the Gerjuoy-Stein rotational cross sections, we take the
limiting expressions of L and M for B, » 0, and show explicitly that Equa-
tions (40) and (41) are indeed true, independent of all cross section
parameters. According to eguilibrium statistical mechanics, this "must"”
happen, but it is comforting to see it follow from a direct calculation
using actual cross sections.

Using the complete L and M for N,, the actual spectrum of Eq.
(36) with E = 0 is shown in Figure 2. Above about .01 eV it is indeed
Maxwellian at the correct temperature, 300 K. (The departure in the high
energy tail above 0.3 eV is because we assume the gas is in the vibration-
al ground state). But near .01 eV there is a non-Maxwellian dip due to
"large" energy jumps not well modelled by the Fokker-Planck form. This
irregular behavior goes away as B, » 0.
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Figure 2. Spectrum in N, from Equation (36) when E=0. Dip near .0l eV o
is due to rotational transitions of comparable energy. Gas ‘-
at 300K. &
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\_: SECTION 6

"' 1 RELATION TO ORDINARY DIFFUSION THEORY

s ')

o

71_:“..

N

) )

_:“- The functional form, Eq. (36), for F has a simple interpretation
in terms of elementary diffusion and convection theory. -

o

e

:-:. Let a quantity v diffuse and convect 1in one dimension x with

E“ diffusion coefficient D and convection velocity V:

Wt &

e W+ 3 (vy) =2 pA (42)

) at Ax ax ax

:;u{

i' '

e We shall presently identify x with w and v with g. V and D may be @

N functions of x. In steady state, the elementary diffusion-convection

Wb equation (42) shows that the flux must be constant in t and x:

-(..'-

Pat

i Vo - D %‘2 = constant = 0 (43) -

. X

o

};2 We assume % and its derivative vanish at some end point, so the constant

‘; is taken to be zero. Then -

v

A 1 3w =V | (44)

- v 3x D

vl

15 : . : e -
In steady state the (prescribed) convection velocity and diffusion -

) coefficient determine the logarithmic derivative of the dependent variable

»

¢
E‘: by Equation (44). Consequently v is distributed according to
o




[ Y dx
v(x) = yoe

where wo is a normalization constant.

If we now take x to be the electron energy w, and ¢ the spectrum
g, the controlling equation Equation (33)

2
39 + 3 1e%62 1g - 22 (wg)l - Novlg - 2 (NyvMg)} = O (46)
ot ow mv 3 3w ow

can be put in the canonical form of Equation (42) by expanding derivatives
and defining

Di = NoVM (47)

as the coefficient of diffusion due to straggling from inelastic energy
loss collisions,

(48)

as the coefficient of diffusion due to momentun transfer scatterings in
the electric field, and the following convection velocities:

2 .
VE QEE‘ = mean energy gain rate in electric field , (49)
mv
m

_ 2E2

= gain (or loss) rate arising from energy (50)
MVm dependence of DE .

2
3

= - NovL = mean loss rate due to inelastic (51)
collisions .
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o
b2
N
v; = - 3_ (NovM) = energy drift due to 30i . (52) e
- oW W
_:‘ Diffusion coefficients have dimensions energyz/time, and velocities have
dimensions of energy/time. The energy dependence of DE and D]. cause a .
1 L _J
- mean f1lux (vg and v;) because of the way they appear in Eq. (46) under
E?{ the 3°/3w’ operator. Eq. (46) can then be written
! ':::
29+ 3 (vg) = 2 (D24 (53
3t Iw ( 9) Iw ( Bw) ) -
¥ |
N with
N, .
o Vo= v+ vg TR
, (54) é
: - Nov r(eE/’zo) L - 1__:_ (VM) |
vV 3w
3mv o
and
®
i D = DE *+ Dy
o (55)
. 2
- = Ngv r(eE/Ng)* | M1 _
‘ 3 9 L
-
‘{i Following Eq. (45) the steady state solution of Eq. (53) is
k-
B o
T g = gg exp (f.g_ dw) . (56)
Forming the ratio V/D from Equations (54) and (55), we add and subtract
M/2w in the numerator, and use v-1(a/aw)(vM) + M/2w = w-1(3/3w)(wM) to -
o, f ind
\‘
o
N
WY
L
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where E' eE/N, is the reduced electric field. Upon integrating and
exponentiating, the first term (1/2w) becomes /w , and the remaining
factor is therefore F,

W 1
F = FO expf-lr L + w™ B(WM)/QW dw]r
o E'?/30 + M

as in Eq. (36). Thus the functional form for the steady state energy
spectrum is an elementary consequence of ordinary convection and diffusion
in energy space, as is the time dependent equation (46) or (33).

This can be seen as well by writing the flux, Eq. (28), in terms
of F. After some algebra it becomes

12
- _ 2Ny 2 1 3(wM) 1 ¢ & (_E_. + M1 230 (59)
m2 Wooow 30 ow

the coefficients of F and 3F/3w being the convection velocity numerator
and diffusion coefficient denominator, respectively, of the integral in
Eq. (58).




.l'-A'-",-'l'

A

A

.l.‘l

a
&

. ’. ". "L."A.“"'

-

.-

AR

¥

ENSSN

-

o/

-

s Rl a s ol
DRSNS
sl e s Al

SECTION 7
THE CASE OF NITROGEN

We apply these ideas to N2. L and M are constructed from cross
section data. The steady state spectrum, Eq. (36), and swarm parameters
are then computed.

CROSS SECTIONS, AND L AND M FUNCTIONS

Electron-molecule cross sections are compiled in a number of
places (refs 9 - 12). Reference 13 is a recent critique of rotational and
vibrational excitations. Here we use the Gerjuoy-Stein expressions (ref
14) for rotational cross sections, with the N, quadrupole moment Q = 1.04
in units of eai.

For the vibrational and electronic cross sections, we use a set
compiled by Archer (ref 15) that has been in use in the DNA Auroral
physics community for years. These vibrational excitations are based on
the measurements by Schulz as normalized by Haas. A low energy (0.29 -
1.7 eV) tail for the v = 0 - 1 transition was added as suggested by
Englehardt, Phelps, and Risk (Ref. 6). Numerical values for the tail were
taken from the second table on page 64 of Kieffer (Ref. 16). The elec-
tronic cross sections agree quite well with those tabulated by Wadzinski
and Jasperse (ref 11).

L and M for 10-3 < w < 102 eV are shown in Figure 3a. L becomes

negative for w < Tq ~ .025 eV, because a lower energy electron gains
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Figure 3b. M/L for N, at 300 K.
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energy on the average by collisions with the gas at this temperature from
super-elastic rotational transitions. M, of course, is always positive.
Over 10-° to 10 eV, these functions vary by more than six orders of magni-
tude.

ing than M or L itself,

The ratio M/L is shown in Figure 3b. It is much more slowly vary-

THE ENERGY SPECTRUM

Figqures 4 and 5 show the energy spectrum F, Eq{36), for E/Ng =
10 Td and 100 Td, respectively. 1 Td = 10-'7 v-cm?,
is markedly higher than in the CSDA which is also shown.

The high energy tail
Any process with
significant cross section above the CSDA tail will have markedly different

rates with the two spectra.

Figure 5 also shows a spectrum from the calculation by Pitchford
and Phelps (Ref. 17),
Equation with complete collision integral.
is not meaningful

involving a numerical solution of the Boltzmann
These authors used a different
section set, so the comparison in a precise
Nevertheless the differences are noteworthy,

underestimate the

Cross
sense. In particular, we
overestimate the high energy tail and

This is due to the local diffusion approximation.

low energy

population below 2 eV,
Electronic transitions allow high energy electrons to jump to very low
energies more quickly than in the diffusion model. This excessive tail

will also cause a large avalanche coefficient discussed later.

£q. (36) also shows a curious broad plateau around 3.5 to 7 eV,

absent in the more complete calculation. This too is likely due to
electronic transitions which permit electrons to jump over this energy

range. In general it is clear the average swarm energy at 100 Td will be

computed to be too large,
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' TRANSPORT COEFFICIENTS .
The open circles in Figure 6 show the drift velocity calculated
* with Eq(36) superimposed on data compiled by Dutton (ref 8). It is
slightly too small below, say, 3x10~ 17 v-cm?. Here the Fokker-Planck ffj
approximation is in jeopardy because rotational transitions become ::Zj
comparable to swarm energies. Refer to the spectrum in Figure 2 at zero ',:Z
b field. Average energies are slightly too large as seen momentarily.
The drift velocity is also too small near 10-'° or 10-1° V- o
cm‘. Here the spectrum is similar to that in Figure 5, and average ener- o
b gies are again too high, _
At stronger fields the drift velocity returns to good agree- s
ment. Rut at these larger energies the mono-energetic momentum transfer 1;3
* collision frequency in N, Novsm , is slowly varying with energy, and the N
drift velocity is only weakly dependent on the spectrum. }:
At fields less than 0.1 Td, we find drift velocities computed in :_':‘
hd the CSDA to be more than 20% too small, and characteristic energies more _
A "
than 30% too large. Butl in stronger fields, we find CSDA drift velocities o
to be more like 5 to 12% too small, and characteristic energies 5 to 13% R
larger than in the diffusion approximation. -;:‘:
.- l
The swarm characteristic energy is shown in Figure 7. [t is j}f'
slightly too large below about 3x10- 47 V-cmz, and is significantly too =
large above 10-1° v-cm?, accounting for the lowered drift velocities. As X
hd mentioned, this is due to finite rotational and electronic energy jumps in
these two regions. ?ti
<.
The swarm momentum transfer (3 ) and energy transfer (v,) colli- ::::
L g sion freguencies are shown in Figure 8, superimposed on a graph from Frost dhe
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L
‘K
and Phelps (Ref. 18). They are defined by
v = et (60)
m v
™arift
L
' v = ef Ydrift (61)
X u D/u - Tg
®
where u ijs the mobility, and D/u is the swarm characteristic energy.
(Ref. 18 uses Vi for the swarm frequency, a symbol we have reserved
‘ for the mono-energetic collision frequency.) The agreement is striking
| ® except for vy near 1 eV. The dependence of vy on Vdrift and D/u accen-
tuates the dependence on the swarm average energy.
‘ The non-self-consistent avalanche coefficient, a(cmrl), was com-
i @ puted by
1 = fdwgvd (62)
Vdrift
o
: where o js the total N, ionization cross section. It is shown as
{ open circles in Figure 9, superimposed on data of Dutton. Below about 300
: Td the CSDA, shown as crosses, is, of course, woefully low. Ea. (36) is
® too high by more than an order of magnitude at 160 Td, a discomforting
X amount. The spectral tail seen in Figure 5 is responsible.
DISCUSSION
[~
With some exceptions {avalanche rate, characteristic energy when
: near several eV) the Fokker-Planck approximation to the energy spectrum
i
®
® 39
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appears to be able to reproduce transport coefficients in N, with reason-
able accuracy. Other gases are under study. Inaccuracies show up when
molecular energy jumps are not small compared with swarm energies, pre-
cisely when the diffusion approximation becomes unreliable. These fea-
tures are understandable when it is realized that it is the spread of
energy gain and loss about the mean rates that actually determine the

spectrum,

At present the ultimate utility of the diffusion approximation
ijs unclear. It depends in part on the success in other gases. It may be
quite useful for rough calculations, it being possible to obtain spectra
and all transport coefficients merely by numerical quadratures. The time
dependent equation (33) may be especially useful, being a significant
improvement over the CSDA, but not substantially more complicated.
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& APPENDIX A
by ROTATIONAL CONTRIBUTION TO L AND M
)
>
x
. h inel :
> e rotational contribution to C , Ea. (21), is
e
C = T N,y (gve ) - (avo )]
: rot 4 J J,J+2 WHW) 342 J,042'w
g (A-1)
M . N, gve ) - (qvo )]
J=? J 7773,3-2 w-wJ’J_2 J,J-2'w'

since only J+2 are accessible from J for a quadrupole interaction. The
Y second line in Eg. (A-1) is collisions of the second kind, in which an
electron gains eneray. NJ is the number of molecules in the J-th state,

.3 NJ - N’) TP Wi ) ’ (A-Z) ¢
° g &xp(-Ey/T,
“:f Py = 3(1+a)(2J+1)
c:g (A-3)
9 -
® EJ = J{J+1)8B, ,
-
i. and a=0 for odd J, a=1 for even J. The transition energies are
W
g © "y,0¢2 T Eaep - By = (804608, a
:;: (A-a) )
&2 _ - R i
[ ]

~ . %
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.’”“ The cross sections for excitation and de-excitation are taken as those of >
Gerjuoy and Stein (Ref. 14).
o
b
4J+6)B,,1/2
5 - () gy - L 0 (A-5)
" 3, 0%2 - T20%3) (23+1) ° v
]
' 1/2
: .:' 03 3.2 " _J3-1) oolr1+ MB_(H / (A-6) i
. {:, sV (2J-1)(23+1) w
}:'.3
Y where
! 2.2 v
a . Oo = 81rQ 60/15
o (A-7)
L
o 3, = Bohr radius = .529x10~% cm
T
o
re and Q is the molecule quadrupole moment in units of eag. Q=1.04 for N,.
I By is the rotational constant, = 2.5x10°* eV in N,.
L The expressions for L and M, Equations (23) are ®
‘\ .I’:‘: © ©
M o = ¥ Y -
<) Lrot = Moo, 420,002 - Na%g,0-299,0-2 (A-8)
:‘ 0 2 S
> 17 N 15 N w2 )
e Mot =5 7 N9"3,042%0,002 * 5 ) N9"3,30-290,0-2 (A-9)
l. - 0 2
"E:
.
D L At 300° it takes 20 or 30 terms for the sums to converge (by which point @
m,. EJ/Tg = J(Jﬂ)BO/Tg >5).
5
x’__ Below the threshold for exciting the lowest state, J=0 to J=2, w
< 6By, L is obviously negative. The electron can only qain energy. All hd
\Z:' terms together actually make Lrot negative for w < Tg.
::'.'
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THE SMALL By LIMIT

We now obtain the 1imiting expressions for Lrot and Mrot when
By << Tg, and By << w. Let
o= w1, y=Bu«w (A-10)
T W

Inserting the variables in Eq. (A-8) and cancelling common factors in the

numerator and denominator we have

= 280yB, 5 (1+a)e d(I*L)a (340y(341)/T-(43+6)y
0

—
]

2008, T (1+a)e 9 *D)e g5 1), 17 (232)y
2

where A = 3N0/ZJPJexp(-J(J+1)a) is a normalization constant.

Many terms, up to J ~ v5/a, will contribute. Take
value of (1+a) to be 3/2, and keep first order in y:

L = 3A0,B,y T (J+2)(J+1)e
0

~J(J+1)a [

1-(23+3)v]

- 3hoeBy T 3(3-1) e e 1 2g-1)y)
2

(A-11)

the average

(A-12)

The sums will behave as inverse powers of a, so in the first sum the J=N

and J=1 terms are negliaible compared with the remaining g .
. ® 2
the two remaining sums I ,
2
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a L= v gy (a41) - g(0-1)
.'-f 3A0080 2
'.'_: =[(J3+2)(3+1)(23+3) + J(J-1)(23-1) "y} (A-13)
o - 2 v e M0 L 1203430247043 0y
fiﬁ Higher powers of J lead to higher powers of a~t/2 in the sums. Keeping
[ leading terms,
J.. oo
L =gt 0 arg g3y (A-14) v
i A8y
-
:j The sums can be approximated by integrals
-2 .
v T a-d(0+l)a T -ax? T amax? 1 ®
‘ T Je 1% s [ xe dx = [ xe ™" dx = Z— (A-15a)
T 2 2 0 *
& PgtendIa i gseman® gy - L (A-15b) ‘
2 0 2a ®
o Then
,‘
:'\ 2T T o
N L _=2(1-x=_4a1-9 (A-16) ﬂ
~l'\ 3A0080 o1 o BO w i
v
- The sum in A is )
33 voped(dte g , ]
J': J J 2(1
= $0 .
-’v
ol A= 3Ny /pp et oLy (A-17)
i-‘C 0/>3 4 ’3‘ 0
‘e
N Equations (A-16) and (A-17) then show the limiting form for L as B, » 0 to -
be
pls .
‘\:,
o L = 8NyooB,l1 - w_g) : (A-18)
>
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‘o Electrons with w < Tq qain energy.
K A parallel calculation for M shows
)
i
® M= ANQOOBOTQ . (A-].Q)
A
Fquations (A-18) and (A-19) are explicit expressions for L and M as B, »
) 0. In this same limit the diffusion approximation to the spectrum should
' be valid.
REDUCTION OF SPECTRUM TO MAXWELLIAN
° The steady state spectrum Eq. (36) must become Maxwellian when
£=0. This led to the requirement (40) or (41). We now show these
requirements are indeed met when B, » O for then energy jumps are small
and the diffusion expressions are good.
o
With M from Eq. (A-19), and L from (A-18), find
L3 (w) =M (A-20)
W AW W
[
. and
L=M _M (A-21)
T ]
g
° Thus
L+ w'! a(wM)/dw= 1 (A-22)
- M T
¥ g
i as reguired. Likewise the integral relationship (41) between L and M is
easily shown to hold.
; This shows by explicit calculation that for small energy jumps
® the diffusion approximation reduces correctly.
47
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